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In this analysis, a Je!cott rotor model is used which is a thin disk located on a #exible
shaft which is simply supported at the ends. The non-linear dynamic equations of the rotor
are obtained. A perturbation technique is used to obtain approximate linear equations for
the non-linear equations. The non-linear equations and approximate linear equations are
solved numerically and the solutions compared. The approximate linear equations correctly
predict the non-linear vibration. It has been experimentally observed in many researches
that in addition to the synchronous whirl, there exist subharmonic vibrations which may
cause instability. This is generally attributed to the dry friction, non-linear or asymmetric
sti!ness, rubs, #uid-"lm bearing clearances. This study shows that there exist two
subharmonic transient vibrations caused by the non-linearity of the system itself. The two
subharmonic frequencies are equal to (u#u

n
) and (u!u

n
) and also the supersynchronous

component of the vibration becomes unstable when the speed ratio u/u
n
is *2.
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1. INTRODUCTION

In general, the equations developed for the Je!cott rotor model are non-linear but after
assuming synchronous whirl, the steady state equations become simple and linear and have
a well-known solution. This solution shows that resonance occurs when the rotational
speed is equal to the critical speed (natural frequency) of the system. Constant whirl
amplitude and phase angle can be calculated as a function of damping and speed ratio [1, 2,
3]. Ehrich [4] "rst noticed and analyzed the appearance of a pseudo-critical peak in the
response amplitude for a rotating machine operating at twice its fundamental critical
rotational speed. The frequency of vibration was at the fundamental natural frequency, that
is, at exactly 1

2
the operating speed. He referred to the phenomena as subharmonic vibration.

Bently [5] did systematic experimental work on the second and third order responses of an
experimental rotor, observing pseudo-critical peaks at respectively twice the fundamental
critical speed with 1

2
per revolution frequency, and at three times fundamental critical speed

with 1
3

per revolution frequency. Childs [6] analyzed the problem, expanding on Bently's
modelling of the problem, and referred to the problem as fractional frequency rotor motion.
Ehrich [7] states that rotor dynamic instabilities and self-excited vibrations generally take
the form of lateral #exural vibrations at the rotor natural or critical frequency di!erent
from, and most often below the running speed. The &&subsynchronous'', or &&super-critical''
vibration amplitude generally increases so sharply with increasing running speed or power
that, if the vibration is monitored, additional increases in running speed are deemed
impossible, or if the vibration is not monitored, the equipment is damaged severely or
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destroyed. This class of phenomena imposes a continuing restraint on the performance
capabilities of rotating machinery, and continues to cause di$culties in the design and
operation of high-performance machinery [8]. Ehrich [7] has modelled the rotor with the
planar asymmetry in the stator sti!ness and shown that asymmetric sti!ness may cause the
subharmonic and superharmonic resonance peaks. Lund [9] states that critical speed
calculations (which ignores damping and presupposes isotropic bearings and, therefore,
circular whirl orbits) are performed as a calculation of the resonant frequencies of a beam in
planar lateral vibrations when actually the shaft itself only bends and does not vibrate at all.
Thus, for a whirl motion at frequency u as observed by stationary probes, a strain gauge
attached to the shaft will register a vibration with frequency components (u#u

n
) and

(u!u
n
). Subsynchronous whirl is also experimentally observed in the work of Khan et al.

[10]. Ehrich [11] and Childs [3] attribute this subsynchronous whirl to dry friction, rubs,
trapped #uid, hysteresis or rotor internal damping, oil seals and uneven journal clearances
in the #uid-"lm bearings. Ganesan [12] recently studied the e!ect of non-symmetric
clearances in bearings.

In this study a Je!cott model of rotor dynamics is used. The non-linear equations of the
system are obtained and solved numerically without making a synchronous whirl
assumption. A perturbation technique is used and the non-linear equations are
approximated by a set of linear di!erential equations. The "rst part of the di!erential
equations give the synchronous whirl and phase angle, the second part of the di!erential
equations produces a characteristic equation which gives two frequencies equal to (u#u

n
)

and (u!u
n
). The study shows that on top of the synchronous whirl and the steady state

whirl radius there is one subsynchronous and one supersynchronous damped transient
vibration resulting directly from the non-linear dynamics of the motion itself and the
supersynchronous component becomes unstable when the speed ratio (frequency ratio)
u/u

n
is equal or greater than two.

2. ANALYSIS

Figure 1 shows the Je!cott rotor model which is a thin unbalanced disk located at the
middle of a #exible shaft which is simply supported by two bearings at the ends. Here O is
the center of the disc before de#ection. S is the geometric center of the disk which coincides
with O before de#ection. G is the mass center of the disk. r is the de#ection of the shaft, e is
the mass eccentricity, h is the whirl angle, u is the spin of the disk. The governing equations
in the radial and tangential directions are obtained as follows [1, 2, 3]

rK#2fu
n
rR#(u2

n
!hQ 2) r"eu2 cos (ut!h),

rhG#(2fu
n
r#2rR )hQ "eu2 sin (ut!h). (1)

Here r is the whirl radius, f the damping ratio, u
n
the natural frequency of the rotor, h the

whirl angle, e the mass eccentricity, and u the rotational speed which is assumed constant.
After de"ning a new whirl radius and a new non-dimensional time, the non-linear
di!erential equations will take the form

gA#2fpg@#(p2!h@2)g"cos (q!h),

ghA#(2fpg#2g@)h@"sin (q!h), (2)



Figure 1. Je!cott rotor model.
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where

g"
r

e
, p"

u
n

u
, q"ut, ( . )@"

d

dq
"

1

u
d

dt
.

Here g is the non-dimensional whirl radius, f the damping ratio, p the speed ratio (frequency
ratio), and q the non-dimensional time. In these equations derivatives are with respect to the
non-dimensional time q and indicated by a prime notation. Now an approximate solution
to the problem of the following type is assumed:

g (q)"g
0
(q)#kg

1
(q)#2,

h(q)"h
0
(q)#kh

1
(q)#2. (3)

Here k is the perturbation parameter. After putting the assumed solution into equation (2)
and neglecting higher order terms of k, the following set of di!erential equations are
obtained:
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0
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0
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0
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0
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0
#2g@

0
)h@

0
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0
) (4)
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)"0
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For the "rst part of the equations of equation (4) synchronous whirl is assumed which
means that at steady state the whirl speed is constant and equal to rotational speed, and
the whirl radius r is also constant, this means u"hQ , hG"rK"rR"0. In terms of the
non-dimensional parameters these conditions are h@

0
"1, hA

0
"gA

0
"g@

0
"0. After these

assumptions equation (1) is reduced to

(u2
n
!hQ 2 )r"eu2 cost,

2fu
n
rhQ "eu2 sint. (5)
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Here t"ut!h is the phase angle. In non-dimensional form, equation (5) is

(p2!h@2)g"cost,

2fpgh@"sint. (6)

From equation (5) the solution for whirl radius r and phase angle t can be found as

r"
e (u/u

n
)2

J[1!(u/u
n
)2]2#[2f u/u

n
]2

, t"(ut!h)"tan~1
2fu/u

n
1!(u/u

n
)2

. (7)

In non-dimensional form equation (7) is

g
0
"

1

J(p2!1)2#(2fp)2
, t"q!h

0
"tan~1

2fp

p2!1
. (8)

Equation (8) is also a solution for equation (6). For a given p and f, g
0

and t are constant. If
one puts these values into the second part of equation (4), they will become a linear set of
di!erential equations which is
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0
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0
DC

gA
1
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1
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2fp
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!2g
0

2fpg
0
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D"C
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When this equation is solved, g
1
(q) and h

1
(q) are obtained and together with the solution

given in equation (8) an approximate solution will be obtained. The non-linear equations
given by equation (2) are solved using a Runga}Kutta method. The equations given by
equation (9) are also solved with the same numerical method and according to equation (3)
an approximate solution is obtained and the results are compared. The plots are shown in
Figures 2}5. The approximate solution is plotted with dashed lines and shifted with the
Figure 2. Whirl radius for the subcritical case f"0)01, p"1)4, k"88)48: *, non-linear, } ) } ) } linearized.



Figure 3. Whirl speed for the subcritical case f"0)01, p"1)4, k"88)48: *, non-linear, } ) } )} linearized.

Figure 4. Whirl radius for the super-critical case f"0)01, p"0)8, k"256)32: *, non-linear, } ) } )} linearized.
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amount of phase angle t to match with the actual solutions. Figures 2 and 3 show the
results for the subcritical speed p"1)4 and for the damping f"0)01. Figures 4 and 5 show
the results for the supercritical speed p"0)8 and for the damping f"0)01. As can be seen
from the plots approximate solution matches well with the solution of the non-linear



Figure 5. Whirl radius for super-critical case f"0)01, p"0)8, k"256)32: *, non-linear, } ) } ) } linearized.

TABLE 1

¹he roots of the characteristic equation for f"0)01

p"u
n
/u u/u

n
s
1,2

f
1,2

u
1,2

/u

0)4 2)5 0)0035$1)39j 0)0025 1)4
!0)0115$0)59j 0)0192 0)6

0)5 2)0 0)00$1)5j 0)00 1)5
!0)01$0)49j 0)02 0)5

0)8 1)25 !0)0068$1)79j 0)0038 1)8
!0)0092$0)19j 0)0462 0)2

1)0 1)0 !0)01$1)99j 0)005 2
!0)01$0)00j 1 0

1)25 0)8 !0)0135$2)24j 0)006 2)25
!0)0115$0)24j 0)046 0)25

2)0 0)5 !0)0225$2)99j 0)0075 3
!0)0175$0)99j 0)0175 1

2)5 0)4 !0)028$3)49j 0)008 3)5
!0)022$1)49j 0)0147 1)5
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equations. The results indicate that on top of synchronous whirl radius and synchronous
whirl speed there are two damped oscillations, one is weakly damped the other one is
strongly damped. These damped frequencies can be obtained from the characteristic
equation of the equation (9):

g
0
s4#4fpg

0
s3#(4f2p2g

0
#p2g

0
#3g

0
#cost)s2

#2(fp3g
0
#fpg

0
#fp cost#sint)s#(p2!1) cost#2fp sint"0. (10)



Figure 6. Root locus of the subharmonic frequencies. Solid line f"0)01, dashed line f"0)03, dash-dot line
f"0)05.

Figure 7. Polar plot of the whirl radius of the non-linear solution for the subcritical speed, f"0)01, p"1)4.
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Some of the roots of this characteristic equation are tabulated in Table 1.
In this table the "rst column shows the speed ratio p"u

n
/u, the second column is the

inverse of p which is u/u
n
, in the third column are the roots of the characteristic equation

given by equation (10). The roots indicate two damped vibrations, corresponding damping
ratios f

1,2
and natural frequencies u

1,2
which are given in the fourth and "fth columns.



Figure 8. Polar plot of the whirl radius of the non-linear solution for the super-critical speed, f"0)01, p"0)8.
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These values are calculated according to the formulae

s
1
"!u

1
f
1
$(u

1
Jf2

1
!1) j,

s
2
"!u

2
f
2
$(u

2
Jf2

2
!1) j . (11)

The roots indicate that there are two subfrequencies which are equal to p
1,2

"p$1, in
other words u

1,2
"u

n
$u. Another observation is such that when p)0)5 or u/u

n
*2,

one of the roots has positive real part which means that system is unstable. If the system is
running with super-critical speed at which the ratio is equal to two or greater, the
superharmonic vibration amplitudes will grow rapidly and cause instability. The rootlocus
of the characteristic equation is shown in Figure 6. It is clear from the plot that for p)0)5
one root which gives the superharmonic frequency, has positive real part. At p"0)5 the
rootlocus crosses the imaginary axis. This crossing point is not changed for di!erent f. In
Figures 7 and 8 polar plots of whirl radius are shown which are obtained from the solution
of the non-linear equations. Figure 7 shows the whirl for the subcritical speed. Since the
subharmonic components are damping quickly, the whirling approaches to a steady circle
but in Figure 8 which shows the whirl for the super-critical speed, the subharmonic
components are weakly damped, which is why they are e!ective and whirl motion does not
approach to steady circle but has a kind of whipping or wobbling.

This analysis explains the reasons of the subharmonic vibrations observed in some
experimental works. The non-linear behavior of the rotor itself has a constant whirl radius
and synchronous whirl speed plus subharmonic and superharmonic vibrations. For the
speed ratios greater than or equal to two, the superharmonic frequency component has
a positive real part which causes instability.
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3. CONCLUSION

In this study, a Je!cott rotor model is assumed for the analysis which is a thin unbalanced
disk mounted on a #exible shaft and simply supported by bearings at the ends. The
non-linear dynamic equations of the system are obtained and solved numerically.
A perturbation technique is used to approximate the non-linear equation and two sets of
linear di!erential equations are obtained. The "rst set of equations gives the well-known
steady state synchronous whirl radius and constant phase angle. The second set of
equations is a linear set of second order damped vibration equations which has two
frequencies which are u

1
"(u#u

n
) and u

2
"(u!u

n
). The solution of the approximate

equations also matches well the solution of the non-linear equations. In previous works, the
subharmonic frequencies are assumed to be caused by hysteresis, dry friction, rubs, bearing
clearance and non-linear or asymmetric sti!ness. This analysis shows that subsynchronous
and supersynchronous frequencies which are frequently observed in experiments, may be
caused by the non-linear dynamics of the rotor itself.
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APPENDIX A: NOMENCLATURE

r whirl radius or de#ection of the geometric center S
f damping ratio of the #exible shaft and disk system
u

n
natural frequency or critical speed

u rotational speed
e mass eccentricity
g non-dimensional whirl radius (r/e)
p speed ratio or frequency ratio (u

n
/u)

q non-dimensional time (ut)
h, hQ whirl angle and whirl speed
h@, hA "rst and second derivative with respect to the non-dimensional time q
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